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Abstract
Purpose  The use of testicular sperm is confined to patients with azoospermia, but there is evidence to support its use in males 
with poor semen parameters and/or previous intracytoplasmic sperm injection (ICSI) failures with ejaculated spermatozoa. 
We compared the aneuploidy rate and quality between embryos derived from ICSI cycles with ejaculated sperm (EJ-ICSI) 
and those from ICSI cycles using testicular spermatozoa (TT-ICSI) within the same couple.
Methods  Retrospective study of 27 couples who first underwent an EJ-ICSI cycle that did not result in a livebirth and after-
wards a TT-ICSI cycle. Only the two closer cycles of each couple were included. Preimplantation genetic test for aneuploidies 
(PGT-A) was performed in both ICSI cycles and classic parameters of embryo quality were assessed until blastocyst-stage.
Results  A total of 375 embryos from 54 ICSI cycles were evaluated. Aneuploidy rate was measured by two different 
parameters. Patients undergoing TT-ICSI presented a similar aneuploidy rate as EJ-ICSI group: 30.7% (23.4–38.0) vs 26.8% 
(18.1–35.5) per inseminated oocytes (P>0.05), and 76.2% (66.2–86.2) vs 72.1% (59.1–85.2) per the total number of biopsied 
embryos (P>0.05), respectively. Further, the good-quality blastocyst rate per correctly fertilized oocyte was significantly 
higher in TT-ICSI group (33.6% (30.4–36.9)) than EJ-ICSI group (24.2% (20.3–28.0)) (P<0.001).
Conclusions  Switching to testicular sperm for ICSI yielded better-quality blastocysts without affecting the chromosomal 
load of the embryos in non-azoospermic couples with a previous unsuccessful ICSI using ejaculated sperm. This strategy 
is a good option for couples seeking a livebirth who do not want to use donor sperm.
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Introduction

Since its first description in 1992, intracytoplasmic sperm 
injection (ICSI) has been widely used to overcome all forms 
of severe male infertility [1], requiring only a low number of 
sperm to fertilize the oocytes. In addition, the combination 
of surgical extraction of testicular spermatozoa with ICSI 
technique was a revolution for those men with azoospermia 
to achieve biological paternity [2–4], obtaining relatively 
acceptable success rates and demonstrating the innocuous-
ness of the technique for the male and the offspring obtained 
[5].

The use of testicular sperm is mandatory when sperm are 
not found in the ejaculate. However, its use has also been 
proposed recently as a clinical strategy in cases of males 
with sufficient sperm in the ejaculate but showing severe 
male infertility [6–9] or high DNA fragmentation values 
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[10–12], and even in couples experiencing unsuccessful 
ICSI cycles (understood as failure to achieve a live birth) to 
increase the chances of pregnancy [9, 13].

With the improvement of in vitro fertilization techniques 
as well as in testicular sperm retrieval methods, this practice 
has become more common in recent years. Some authors 
did not find poor ICSI outcomes when using non-ejaculated 
spermatozoa, not only when comparing the results between 
ICSI cycles using testicular versus ejaculated sperm [14], 
but also when evaluating ICSI outcomes using testicular 
versus epididymal spermatozoa [15]. Significantly superior 
results were even found when comparing ICSI treatments 
using testicular sperm with ICSI cycles using ejaculated 
spermatozoa in terms of implantation rate (36.8% versus 
19.9%) and pregnancy rate (23.7% versus 12.7%) in patients 
with necrozoospermia [16], and in those couples with male 
factor and long-term infertility [9]. Indeed, in this little case-
report study concluded that changing the sperm source for 
ICSI in four couples with recurrent implantation failure, sev-
eral previous unsuccessful IVF/ICSI cycles, and no other 
obvious cause of male infertility improved their clinical 
outcomes obtaining all couples a newborn.

Likewise, the use of testicular-retrieved sperm in males 
with increased DNA fragmentation in their ejaculated sperm 
seems to enhance the probability of a live newborn. This 
reasoning is based on the fact that testicular spermatozoa 
have less genome damage due to its low exposure to reac-
tive oxygen species unlike sperm storing and transporting 
along the epididymis and genital tract [17–19]. There are 
both prospective and retrospective studies that demonstrate 
improved outcomes when testicular sperm were used [10, 
11, 18–20]. One meta-analysis [21] comprising data from 
507 ICSI cycles of patients with oligozoospermia and high 
sperm DNA fragmentation found that the live newborn rate 
was 46.9% in couples using testicular sperm, 21% higher 
than the live newborn rate obtained in patients who under-
went ICSI with ejaculated sperm cells (21.3%).

By contrast, other authors stated that ejaculated spermato-
zoa lead to better clinical results due to their maturity, since 
during their passage through the epididymis they acquire 
modifications necessary for their subsequent encounter 
with the oocyte and its fertilization [22]. Since testicular 
sperm does not undergo these changes in the epididymis, 
this would explain why fertilization, implantation, and preg-
nancy rates were lower along with a higher probability of 
miscarriage in ICSI cycles using testicular sperm instead 
of epididymal sperm [23, 24] or compared to those using 
ejaculated sperm [5, 7]. As a matter of fact, the latest meta-
analysis in 2018 [25] questions the benefits of switching 
to testicular sperm. They evaluated whether the pregnancy 
likelihood is higher in ICSI cycles performed with testicular 
spermatozoa in males with abnormal semen parameters. The 
main conclusion reached was that the evidence is of low 

quality and limited to recommend the use of testicular sper-
matozoa instead of ejaculated ones to improve the pregnancy 
outcomes in males with oligozoospermia and high levels of 
sperm DNA fragmentation.

Furthermore, an increased risk of sperm chromosome 
aneuploidies has been related to males with severe infer-
tility [26–30] and with obstructive and non-obstructive 
azoospermia [31, 32], as a possible result of impaired sper-
matogenesis. In addition, the rate of aneuploidy was found 
higher in testicular spermatozoa than in ejaculate ones when 
compared from the same individual [33]. The total ane-
uploidy rate was significantly higher the lower the sperm 
concentration, being an inverse correlation and more evi-
dent in males with severe oligozoospermia [28, 29]. Based 
on this premise, it should be considered that chromosomal 
abnormalities of the spermatozoon may affect the genetic 
load of the future embryo [27, 28] and, in consequence, its 
quality [34, 35] in couples with severe male infertility.

Euploid and good-quality embryos are unequivocally 
related with improvement of clinical outcomes. Therefore, 
the use of testicular sperm should be followed by the evalu-
ation of the chromosomal status of the embryos [36]. The 
application of preimplantation genetic analysis for aneu-
ploidy (PGT-A) allows the selection of euploid embryos for 
transfer which lends a higher reproductive success, reducing 
the incidence of pregnancies and offspring with chromosome 
abnormalities. However, in terms of embryo quality, there 
is still no sufficient evidence about how can be affected by 
testicular retrieved sperm [37–39], and its impact should be 
further evaluated.

To date, the basis for the better pregnancy outcomes 
reported from couples that decided to change the sperm ori-
gin for their subsequent ICSI attempt is unclear. Although 
testicular sperm could present better physiological features 
compared with the ejaculate ones in certain non-azoosper-
mic males, little is known if this improvement derived from 
genetic or cytoplasmic factors in the embryos obtained. This 
gap of knowledge should be evaluated before recommending 
this practice to couples with poor reproductive outcomes 
with ejaculated semen. The main objective of this study was 
to compare the aneuploidy rate between embryos derived 
from ejaculated sperm and embryos derived from testicu-
lar sperm from ICSI cycles with PGT-A within the same 
couples. As a secondary objective, embryo quality was also 
compared between the two groups.

Materials and methods

Study population

This study included the clinical data from 27 couples 
who had at least one previous unsuccessful ICSI cycle, 
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understood as the failure to obtain a live birth after transfer-
ring all available embryos, using ejaculated sperm (EJ-ICSI) 
that subsequently underwent an ICSI with spermatozoa 
obtained from testicles (TT-ICSI) between January 2000 and 
November 2020. Only the two ICSI cycles closest in time 
were included with the aim of standardizing and control-
ling the characteristics of the patients in both treatments. A 
PGT-A was performed in both ICSI cycles using autologous 
oocytes. Only ICSI cycles performed with ejaculated semen 
prior to ICSI-TT were included.

Eligible subjects: i) males with sperm count on their 
ejaculate; ii) at least one previous ICSI failure using ejacu-
lated sperm; and iii) use of testicular spermatozoa obtained 
by TESE for ICSI. Males with azoospermia that are unable 
to ejaculate sperm, couples that changed the origin of the 
oocytes between the two cycles, and IVF-ICSI (mixed) 
cycles were excluded. ICSI cycles with donor eggs were 
not included.

This study was approved by The Ethics Committee for 
Investigation of the University and Polytechnic La Fe Hos-
pital (project code 2011-FIVI-096-NG).

Sperm collection

Semen samples from ejaculate were collected after 3–5 days 
of sexual abstinence in a sterile recipient by masturbation. 
After liquefaction, basic sperm parameters (volume, concen-
tration, motility, and morphology) were evaluated according 
to the World Health Organization criteria [40].

Surgical sperm retrieval by TESE (testicular sperm 
extraction) technique was used to collect spermatozoa from 
testicles in all cases, following the procedure as previously 
reported [41]. Briefly, after the administration of local anes-
thesia, the scrotal skin and tunica vaginalis were opened. 
One small incision was made through tunica albuginea to 
extrude testicular tissue, which was excised and placed in 
sperm preparation medium (Medicult; Jyllinge, Denmark). 
The tissue was dissected manually with sterile slides and 
the presence of sperm cells under an inverted microscope at 
×400 magnification was checked. When an adequate number 
of spermatozoa was found for ICSI technique, the procedure 
was ended. Otherwise, another sample was taken from a 
different region but in the same testicle. Sperm cells were 
immediately frozen for the later use as described [42, 43].

Ovarian stimulation protocols

Ovarian stimulation was carried out with different proto-
cols, with the majority being Gonadotrophin-releasing 
hormone (GnRh) -agonist and –antagonist protocols, pre-
viously described [44, 45]. They were begun on day 2 or 
3 of the menstrual cycle according to the patient’s ovarian 
reserve and requirements and administered until the leading 

follicles reached a mean diameter of ≥18 mm. Transvaginal 
ultrasound-guided oocyte retrieval was performed to collect 
follicles 36 h later. The follicles aspirated were mechanically 
denuded at 2 h if the oocytes were to be vitrified for later 
insemination, or at 4 h if they were to be subsequently micro-
injected [46, 47] after the protocol described elsewhere.

ICSI and laboratory procedures

All couples underwent ICSI, firstly with sperm from ejac-
ulate and then with testicular sperm obtained by TESE. 
Insemination was performed with either fresh or vitrified-
warmed [48] oocytes. ICSI procedure was reported else-
where [49]. Ejaculated sperm samples were prepared by 
swim-up or by density gradient as previously reported [50, 
51] before ICSI. Sperm injections of EJ-ICSI were per-
formed with either fresh or frozen specimens whereas in 
TT-ICSI were always with frozen-warmed samples.

The fertilized oocytes were cultured under laboratory con-
ditions (37°C; 6% CO2; 5% O2), and zygotes and embryos 
were evaluated throughout embryonic development. All 
embryos were subject to a PGT-A at day 3 (removing one or 
two blastomeres) [52] or at day 5 (removing few cells from 
trophectoderm) [53] of embryonic development. Embryos 
biopsied at day 3 were left until day 5 of development to be 
transferred (fresh ET) or vitrified and subsequently trans-
ferred (frozen-thawed, FET) [54], if was applicable. All 
embryos biopsied at day 5 were vitrified pending the results 
of the analysis and afterwards transferred (FET). PGT-A 
analyses were always performed by an external company 
contracted for this purpose, following standardized protocols 
for each of the techniques used according to technological 
advances. The analysis technique to detect aneuploidy was 
the same in both ICSI cycles.

Euploid embryos transfer took place at day 5 or 6 accord-
ing to blastocyst stage in all cases. Some patients required 
luteal phase support prior to embryo transfer or endometrial 
preparation (hormone therapy (HT) cycles) [55, 56]. The 
number of embryos replaced complied with Spanish law and 
patient’s requirements and clinical history.

Outcome measures

The main outcome was aneuploidy rate presented as the pro-
portion of the number of embryos categorized after PGT-A 
as aneuploidies divided by the total number of inseminated 
oocytes. In addition, it was calculated per the total number 
of zygotes and per the total number of biopsied embryos. 
Blastocyst rate was calculated as the number of embryos 
that developed until full blastocyst stage at day 5 divided 
by the total number of inseminated oocytes and by the total 
number of correctly fertilized oocytes. Embryo quality 
was assessed at day 5 (D5) according to the morphological 
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criteria established by ASEBIR (Association for the Study of 
Reproductive Biology) [57]. Blastocyst was assessed follow-
ing these morphological parameters: i) the degree of blasto-
cyst expansion (cavitation, full expansion, or hatching); ii) 
trophectoderm (TE) quality (defined as A, B, C, or D) and 
inner cell mass (ICM) quality (defined as A, B, C or D). The 
good quality blastocyst rate was the proportion of A and B 
blastocysts per the total number of inseminated oocytes, per 
the number of correctly fertilized oocytes, and per the total 
number of blastocyst stage embryos.

The reproductive outcomes evaluated were implantation 
rate; biochemical pregnancy rate as the beta-hCG measur-
ing in blood serum higher than 10 IU/L at 10 days after ET; 
and clinical pregnancy rate described as the detection of 
heartbeat at 7 weeks’ gestation. Ongoing pregnancy rate as 
the achievement of pregnancy greater than 12 weeks; mis-
carriage rate as the loss of gestation after positive beta-hCG; 
and live birth rate, as the birth of a newborn.

Statistical analysis

All data were extracted from electronic medical record. Data 
analysis was performed using R Software (4.02 version. R 
Core Team (2020). R Foundation for Statistical Computing, 
Vienna, Austria). The continuous variables were reported 
as mean and 95% confidence interval (95% CI). Categori-
cal variables were described as the proportion of cases (%) 
and 95% CI. Differences between two groups were com-
pared by two-tailed paired t-test for data normally distrib-
uted and Pearson’s Chi-squared test for categorical data. A 
P-value<0.05 was considered statistically significant.

Results

Our study cohort is composed of 27 couples who underwent 
an EJ-ICSI and a TT-ICSI cycle with autologous oocytes. 
The interval between the two treatments was 509 days (17 
months) (41–1471 days). Mean female and male ages were 
36.2 (34.4–37.9) and 40.2 (37.9–42.4) years old in EJ-ICSI 
group, while it was 37.0 (35.5–38.5) and 41.2 (39.1–43.3) 
years old in TT-ICSI group, respectively. There were no sig-
nificant differences regarding demographic and clinical data 
between the two groups (Table 1).

 Female etiology was advanced maternal age (21.4%), 
anexectomy (14.3%), ovarian polycystic syndrome (14.3%), 
low responders (7.1%), and uterine factors (7.1%). The oth-
ers (35.7%) were normal or idiopathic. The semen charac-
teristics of the EJ-ICSI cycles are found in Table 2. Male 
infertility diagnosis was severe oligozoospermia (4.8%), 
oligoasthenoteratozoospermia (OAT) (23.8%), asthenozoo-
spermia (23.8%), criptozoospermia (23.8%), and oligoasthe-
nozoospermia (23.8%).

Table 3 presents the laboratory outcomes of both ICSI 
cycles. The total number of embryos evaluated was 375; of 
these, 214 embryos were biopsied. There were no signifi-
cant differences in the fertilization rate or in embryo quality 
parameters evaluated on day 5 of embryonic development 
between EJ-ICSI group and TT-ICSI group. As TE mainly 
marks the final quality of blastocysts, the proportion of TE 
and ICM quality grade is shown in the Figure 1, but these 
differences were not statistically significant between the two 
groups.

Regarding aneuploidy rate, embryos derived from ejacu-
lated sperm ICSI cycles presented a lowered, but not sta-
tistically significant, aneuploidy rate compared to embryos 
derived from retrieved testicular spermatozoa (Table 3) 
in all approaches performed. Forty euploid embryos were 
transferred; all couples underwent a single ET at blastocyst 
stage (at day 5 or day 6). When comparing embryo qual-
ity, the proportion of good-quality blastocyst rate was 9% 
higher in TT-ICSI group when calculated per the total num-
ber of correctly fertilized eggs, 33.6% (30.4–36.9) vs 24.2% 
(20.3–28.0) in EJ-ICSI group (P <0.001). Finally, Table 4 
describes the clinical outcomes of TT-ICSI cycles.

Discussion

The use of testicular sperm for ICSI is a clinical strategy that 
has been employed in the past years to improve reproductive 
outcomes in couples who have had one or more previous 
ICSI failures using ejaculated semen, especially in cou-
ples in which the male has poor semen quality. Among the 
reports addressing this approach, an improvement in clinical 
outcomes has been observed in relation to pregnancy rate, 
a decrease in miscarriage rate and, therefore, a greater live 
birth rate. However, if this improvement is achieved through 
embryo ploidy or non-genetics features remains to be well 
elucidated to date. Additionally, these studies are few, con-
ducted on heterogeneous populations and many of them do 
not compare this clinical strategy in the couple itself but in 
different groups of patients.

To our knowledge, this is the first study in the literature 
comparing the ploidy and quality of the embryos obtained 
in ICSI cycles using testicular sperm with ICSI cycles using 
ejaculated sperm from the same couple. The retrospective 
evaluation of 54 ICSI cycles from 27 couples revealed a 
similar proportion of aneuploid embryos in the ejacu-
lated sperm and in the testicular sperm group. Further, we 
assessed embryo quality, finding a significantly higher good-
quality blastocyst rate in those ICSI cycles performed with 
testicular-retrieved sperm. Of the 27 couples who underwent 
this procedure, 10 women achieved clinical pregnancy, of 
which eight resulted in the delivery of at least one healthy 
newborn. These results are helpful for clinicians to be able 
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to advise those patients who obtain poor clinical results with 
their ejaculated sperm on the election of the subsequent most 
appropriate reproductive strategy, in order to finally obtain 
a newborn.

In this study, the male population suffered from poor 
semen parameters (according to WHO, [58]), presenting 
some patients severe male infertility (cryptozoospermia 
or OAT). After oocytes insemination with spermatozoa 
retrieved from the testis, we found that the number of 
embryos that became blastocysts in similar to ICSI cycle 
with ejaculated semen. Nevertheless, when blastocyst mor-
phology was evaluated, a significant improvement (of about 
10%) in the proportion of good-quality embryos in the tes-
ticular-ICSI cycles when measured from fertilization. This 
phenomenon may be associated to a better quality of male 

gametes retrieved from the testicle, which show less damage 
than those from the ejaculate in this category of patients who 
presented severe male infertility.

The rationale of using testicular sperm instead of ejacu-
lated ones in non-azoospermic males is the better quality of 
the former due to a higher integrity of the spermatic chro-
matin. It was previously demonstrated in an animal model 
[17] that the passage of sperm through the epididymis and 
genital tract increases DNA fragmentation due to the pres-
ence of reactive oxygen species. Subsequent studies in 
humans demonstrated that ejaculated spermatozoa present 
higher levels of DNA fragmentation than those retrieved 
from testicle [22, 59]. According to available reports [6, 9], 
post-testicular damage could lead to a decrease in the fer-
tilization rate and in the quality of the embryos generated. 

Table 1   Demographics and 
clinical data of patients per 
ICSI cycle depending on sperm 
origin

Values are mean or proportions (95% CI). P-value were calculated with t-student test for means and Chi-
square test for proportions
BMI body mass index, AMH antimullerian hormone, FSH follicle-stimulating hormone, LH luteal hor-
mone, E2 estradiol, P4 progesterone, hCG human chorionic gonadotropin

Parameters EJ-ICSI (n=27) TT-ICSI (n=27) P-value

Female age (y) 36.2 (34.4–37.9) 37.0 (35.5–38.5) 0.3
Female BMI (kg/m2) 24.0 (22.6–25.4) 23.8 (22.5–25.2) 0.9
Male age (y) 40.2 (37.9–42.4) 41.2 (39.1–43.3) 0.4
Male BMI (kg/m2) 27.0 (25.1–29.0) 27 (25.1–29.0) 0.7
Antral Follicular Count (AFC) 13.2 (10.5–16.0) 11.7 (5.7–17.8) 0.6
AMH levels 2.5 (5.4–8.8) 2.5 (1.0–4.1) 1.0
Nº stimulation days 11.8 (9.6–14.1) 11 (10.4–11.7) 0.3
FSH total dose (IU) 1951.1 (1673.2–2229.0) 1821.3 (1560.8–2081.8) 0.3
LH total dose (IU) - 925 (203.2–1646.8) 0.9
HMG total dose (IU) 1051.3 (812.5–1290.0) 998.2 (715.7–1280.7) 0.5
E2 levels on hCG (pg/mL) 2195.4 (1736.4–2654.3) 2150.7 (1732.7–2568.6) 0.8
P4 levels on hCG (pg/mL) 1.0 (0.8–1.1) 1.0 (0.8–1.2) 1.0
Nº days of endometrial preparation 17.6 (14.7–20.6) 17.0 (16.0–18.0) 0.5
Latest endometrial thickness (mm) 9.8 (9.2–10.5) 9.3 (8.4–10.2) 0.2
Latest E2 level (pg/mL) 2174.5 (1641.1–2707.9) 2107.9 (1423.2–1550.1) 0.8
Latest P4 level (pg/mL) 1.0 (0.8–1.2) 1.0 (0.7–1.2) 0.5
Nº aspirated oocytes 12.3 (10.0–14.5) 12.6 (9.8–15.3) 0.9
Nº MII oocytes 11.6 (9.3–14.0) 11.0 (8.4–13.6) 0.7
Nº MI oocytes 0.7 (0.3–1.0) 0.7 (0.4–1.1) 1.0
Oocyte state (%) - - 0.5
fresh 77.8 (57.7–91.4) 66.7 (46.0–83.5) -
vitrified 7.4 (0.9–24.3) 28.5 (6.3–38.1) -
mixed 14.8 (4.2–33.7) 14.8 (4.2–33.7) -
Nº of inseminated oocytes 10.9 (8.8–13.1) 10.9 (8.3–13.4) 0.9
Nº of correctly fertilized oocytes 7.1 (5.4–8.8) 6.9 (5.1–8.6) 0.9
Nº embryos obtained 6.6 (5.0–8.3) 7.4 (5.9–8.9) 0.6
Nº biopsied embryos 3.7 (2.8–4.6) 4.0 (3.2–4.8) 0.3
Nº analyzed embryos 3.7 (2.8–4.6) 4.0 (3.2–4.8) 0.3
Nº informative embryos 3.6 (2.8–4.5) 4.0 (3.2–4.8) 0.2
Nº aneuploidy embryos 2.7 (2.0–3.5) 3.0 (2.4–3.7) 0.2
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Surprisingly, the articles published to date hardly compare 
the quality between ejaculated- or testicular-sperm–derived 
embryos [6, 10, 12, 20], knowing that the achievement of 
embryos of the highest quality enhances the likelihood of 
having a take-home baby. Only Gilman’s study [60] dem-
onstrates improved embryo quality in ICSI cycles using tes-
ticular sperm, a finding that we support.

In this sense, several studies described the improve-
ment of ICSI outcomes for patients with high sperm DNA 
fragmentation (SDF) when testicular spermatozoa are used 
[10–13, 18, 20, 33, 61]. Overall, significant higher fertiliza-
tion and pregnancy rates per embryo transfer [10, 11, 13, 20] 
with lower miscarriages rates [11, 18] were reported with 
this approach. In one retrospective study [62], half of the 
couples with SDF who had a previous assisted reproduction 
treatment (ART) failure obtained a pregnancy with a healthy 
newborn by changing the origin of the sperm. Esteves’ study 
[12] reported a benefit in ICSI outcomes of switching to 
testicular sperm in those males with severe oligozoospermia 
and a SDF than 30%. These results were confirmed in his 
meta-analysis (507 ICSI cycles for TT-ICSI and EJ-ICSI) 
[63], where the clinical outcomes were improved in a sta-
tistically significant fashion in couples performing TT-ICSI 
when male partners have high SDF in their ejaculate com-
pared with EJ-ICSI couples. However, one of the latest 
meta-analysis [25] did not find solid conclusions to endorse 
this practice in this type of patients. In this study, the SDF 
level was not retrospectively evaluated due to the lack of this 
information in the enrolled patients, so we cannot relate it to 
this phenomenon directly.

Nonetheless, several papers also evaluated the change 
to testicular sperm for ICSI to overcome male infertil-
ity related to poor sperm quality in the ejaculate [6, 8, 
9, 64], showing better reproductive outcomes with this 

Table 2   Semen characteristics of neat ejaculated samples and after 
seminal preparation of EJ-ICSI cycles (n=27)

Seminal parameters Mean 95% CI

Before seminal preparation
 Volume (ml) 2.5 1.8-3.2
 Sperm concentration (mill/mL) 10.0 2.0-18.0
 Sperm motility progressive (%) 4.4 0.1-8.6
 Sperm motility non-progressive (%) 11.4 -3.3-26
 Sperm immobile (%) 87.1 70.6-99.6
 Total motile sperm count (mill) 6.6 -1.1-14.4

After seminal preparation
 Volume (ml) 0.4 0.1-0.6
 sperm concentration (mill/mL) 0.9 0.4-1.5
 Sperm motility progressive (%) 12.3 1.2-23.3
 Sperm motility non-progressive (%) 15.3 -1.5-32.1
 Sperm immobile (%) 73.8 54.5-93.0
 Total motile sperm count (mill) 0.1 0.0-0.3

Table 3   Laboratory outcomes 
of ICSI cycles using ejaculated 
(EJ-ICSI) or testicular 
(TT-ICSI) spermatozoa within 
the same couples

Values are expressed as proportions (percentage) and 95% CI. D5: day 5; D6: day 6; ET embryo trans-
fer; FET frozen embryo transfer. The variable total number of embryos transferred is the proportion of 
embryos that were transferred by the total number of embryos attained (per ICSI group)
* P-value was calculated by Student t-test
† P-value was calculated by Paired Student t-test

EJ-ICSI (n=27) TT-ICSI (n=27) P-value

Fertilization rate (%) 65.8 (56.4–75.3) 66.7 (59.2–74.2) 0.7 †

Blastocyst rate (%)
 Per inseminated oocytes 50.7 (40.4–61.0) 50.6 (43.8–57.4) 1.0 *
 Per correctly fertilized oocytes 66.5 (56.5–76.5) 66.4% (56.9–71.9) 0.7*

Good-quality blastocyst rate (%)
 Per inseminated oocytes 18.6 (7.3–29.9) 19.8 (11.1–28.5) 0.9 *
 Per correctly fertilized oocytes 24.2 (20.3–28.0) 33.6 (30.4–36.9) <0.001 *
 Per total number of blastocysts 35.0 (20.4–49.6) 45.8 (34.0–57.5) 0.2 *

Aneuploidy rate (%)
 Per inseminated oocytes 26.8 (18.1–35.5) 30.7 (23.4–38.0) 0.3 †

 Per correctly fertilized oocytes 41.7 (28.2–55.2) 46.6 (37.0–56.2) 0.4 †

 Per total number of biopsied embryos 72.1 (59.1–85.2) (66.2–86.2) 0.6 †

Total number of embryos transferred 22/177 (7.6–17.3) 18/197 (5.1–13.2) 0.4 *
Day of embryo transfer (%)
 D5 fresh ET (20.7–63.7) 33.3 (13.3–59.0) -
 D5 FET 40.9 (20.7–63.7) 55.6 (30.8–78.5) -
 D6 FET 18.2 (5.2–40.3) 11.1 (1.4–34.7) -
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intervention. For instance, cryptozoospermic males ben-
efited from the switch to testicular-retrieved sperm after 
failure of the previous ICSI cycle with ejaculated sperm. 
Although no difference in fertilization rate, a significantly 
higher implantation and pregnancy rate was found in ICSI 
cycles with testicular sperm of the same patients [6]. They 
also assessed the quality of the embryos (only at day 2 
and day 3 of embryonic development) but no statistically 
significant differences were seen between two groups. By 
contrast, this finding was not supported by Abhyankar’s 
meta-analysis of 5 cohort studies [8], in which no differ-
ences were found in pregnancy rates after ICSI between 
the testicular and ejaculated sperm groups of crytozoo-
spermic males. In addition, the testicular-retrieved sper-
matozoa did not improve the pregnancy, miscarriage, and 
live birth rates of patients with a previous ART failure 
[60], although in these cases, the women showed poor 
ovarian response. Nonetheless, there were significantly 
more day 5 blastocyst transfers in the testicular sperm 
group compared to controls, which suggest a better 
embryo quality. Last but not least, in one case-report [9], 
the election of testicular spermatozoa for ICSI in males 
with sperm in the ejaculate suffering long-term infertility 

and multiple failed IVF/ICSI cycles involved the achieve-
ment of ongoing pregnancy/deliveries in the four couples 
evaluated.

This is an important finding for those couples who 
are offered to switch to this clinical strategy after several 
unsuccessful EJ-ICSI attempts and do not want to use donor 
sperm. Obtaining a greater proportion of good-quality 
embryos improves the long-term reproductive prognosis 
of the couple, increasing the cumulative probability of live 
birth per each good-quality embryo transferred and reducing 
the need for additional ICSI cycles. Although it is a little ret-
rospective study of 27 couples, 375 embryos were evaluated 
(of which 214 were subjected to genetic analysis), which 
serves to establish some initial conclusions. Further studies 
are needed in this line.

Nevertheless, the use of surgically retrieved sperm 
has been associated with an increased risk of embryonic 
aneuploidy [33]. This could be related to the higher pro-
portion of spermatozoa with numerical chromosomal 
anomalies in males with some type of infertility [26, 30]. 
Several papers to date compare the embryo ploidy from 
couples with azoospermia [31, 32] and from patients 
with severe male infertility [26–28]. In reference to cou-
ples with severe male factor infertility, the proportion of 
embryos with sex chromosome abnormalities was signifi-
cantly increased compared to embryos from couples with 
normal semen parameters regardless of oocyte origin or 
insemination technique [29]. Additionally, the total ane-
uploidy rate was significantly higher as sperm concentra-
tion decreased in 2008 couples who underwent assisted 
reproduction treatment [28]. Similarly, Kahraman’s group 
[27] studied retrospectively the results of 326 cycles of 
279 couples with different degrees of male infertility. 
They found that the euploidy rate was lower in those cou-
ples using testicular sperm, while it was similar in those 
with severe male factor (males with sperm concentration 

Fig. 1   Embryo quality parameters at day 5 of embryo development 
corresponding to blastocyst stage. Trophectoderm (TE) (a) and inner 
cell mass (ICM) (b) characteristics were evaluated and compared 

between EJ-ICSI and TT-ICSI groups. Chi-squared test: (A) p-value= 
0.7; (B) p-value= 0.3

Table 4   Clinical outcomes after ICSI using testicular sperm (TT-ICSI)

Notes: Values are expressed as proportions (percentage) and 95% CI. 
The clinical outcomes are calculated per cycle

Outcome Value (%) 95% CI

Implantation rate (n) 94.1 (16/17) 15.8–83.7
Biochemical pregnancy rate (n) 68.8 (11/16) 41.3–89.0
Clinical pregnancy rate (n) 62.5 (10/16) 35.4–84.8
Ongoing pregnancy rate (n) 50.0 (8/16) 24.7–75.4
Miscarriage rate (n) 27.3 (3/11) 6.0–61.0
Live birth rate (n) 50.0 (8/16) 24.7–75.4
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below 5 million/ml) and normozoospermic couples when 
the female partner was less than 35 years old. Besides, the 
rate of embryonic mosaicism increased as male infertility 
became more severe. Nevertheless, this finding, they still 
commended the use of PGT-A in cycles with a clear severe 
male factor to prevent embryonic aneuploidy regardless of 
the woman's age.

However, as far as we know, none of the published stud-
ies evaluating the use testicular sperm instead of ejaculated 
sperm in non-azoospermic males has assessed the embryos 
ploidy status. This is an important issue because of the pre-
viously stated evidence of the relationship between severe 
male infertility and embryonic aneuploidy. In our current 
study, a similar aneuploidy rate was found after PGT-A in 
embryos of EJ-ICSI and TT-ICSI cycles performed in these 
couples. According to this result, we can confirm that the 
testicular origin of the spermatozoa does not increase the 
aneuploidy rate of embryos when it is compared within the 
same couple. However, we believe that genetic screening 
for embryonic aneuploidy is recommended when applying 
this clinical strategy in order to improve the reproductive 
prognosis of these couples.

With respect to clinical outcomes, eight of 27 couples 
finally obtain a newborn after the change to testicular sperm. 
The improvement in embryo quality after the change in 
the origin of the sperm may have led to an increase in the 
chances of having a newborn. It is true that the data we show 
refer to 60% of the couples included, since the follow-up 
of the remaining couples was lost. Even so, biochemical 
pregnancy was achieved in eleven women, of whom eight 
became ongoing pregnancy (>12 weeks of gestation). All 
resulted in the delivery of a live birth.

Improved reproductive outcomes in 17 couples with a 
clear severe male factor and unsuccessful ejaculated ICSI 
cycles were also previously reported with the Ben-Ami study 
[6], which found significantly higher implantation (20.7% 
vs 5.7%) and pregnancy rate (42.5% vs 15.1%), resulting in 
a greater proportion of couples with a child at home after 
switching to testicular sperm (27.5% vs 9.4%). Also impor-
tantly, the multivariate logistic analysis performed showed 
three major predictors of pregnancy, which in order of great-
est to least impact were testicular sperm use, use of motile 
sperm, and the woman’s age. However, we are unable to 
compare reproductive outcomes between the two types of 
interventions due to the lack of pregnancy outcomes in ICSI 
cycles with ejaculated sperm. Our results, in this case, are 
merely descriptive, as was done in the small Weissman’s 
study [9], in which the switch to testicular sperm was an 
effective strategy in all four couples evaluated.

On the other hand, with this study design, we were 
allowed to control typical confounding factors, as patients 
served as their control (a paired statistical model was 
applied). As female age is one of the most important factors 

when evaluating embryo aneuploidy, in this case, no sig-
nificant differences were found between the EJ-ICSI and 
TT-ICSI groups, with only 0.8 years difference between the 
first and the second ICSI attempt. The choice of analyzing 
two ICSI cycles closest in time helps to minimize the aging 
of the patient’s oocytes. However, we cannot forget that the 
age of the woman in those older couples may be masking 
this finding despite the performance of PGT-A in both ICSI 
cycles. On the other hand, about 64% of the couples had a 
female infertility factor. This condition could be contributing 
in an unknown way the results presented here, not being the 
sperm factor the only one acting.

In parallel, some reports did not found an increased risk 
of adverse effects on neonatal and perinatal outcomes of 
children born by the use of testicular spermatozoa [5, 65, 
66]. Nevertheless, others authors have suggested that the use 
of testicular sperm in couples with severe male factor may 
increase the genetic risk of the offspring [67] and recom-
mended undergoing a PGT-A in this ICSI cycles [68].

Although the potential benefits of this clinical approach, 
it must be recognized that performing a testicular sperm 
retrieval is an invasive technique. In this study, all males 
had TESE to obtain the sperm cells. This procedure can be 
associated with complications during and after the extraction 
[64], which may condition the decision of patients to per-
form an ICSI cycle with testicular sperm having spermato-
zoa in their ejaculate. Therefore, couples should be properly 
counseled before proposing this strategy, assessing all the 
possible benefits in order to improve reproductive success 
and achieve patient's purpose, a take-home baby.

Limitations of the current study include its retrospective 
nature, which is always subject to bias of clinical practice, 
and the reduced number of patients included due to the selec-
tion criteria and how quite unusual this option is in ART 
centers because patients prefer to switch to donor sperm and 
avoid testicular sperm extraction. More well-designed and 
prospective controlled trials are needed to extrapolate the 
results to the population. Moreover, the technique used to 
assess chromosomal aneuploidy and the day of biopsy varied 
over time, which may have influenced the accuracy of the 
results obtained, although the technique used was the same 
in both ICSI cycles.

On the other hand, we aimed to evaluate the effect of 
sperm origin on embryos from ICSI cycles because it had 
not been adequately assessed to date. A strength of this study 
is that the comparisons between the EJ-ICSI and TT-ICSI 
groups were performed in the same couple, which allows 
controlling for potential confounders between both groups, 
adding value to the results obtained.

In conclusion, our data indicate that switching to testicu-
lar sperm improves the quality of available embryos without 
affecting their chromosomal load in couples with previous 
ICSI failure. Obtaining good quality embryos per stimulation 
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cycle initiated adds more chances of pregnancy, increasing 
the cumulative probability of live birth after their consecu-
tive transfer and reducing the number of cycles required. 
Larger prospective and controlled studies are needed to con-
firm this finding, though. This clinical strategy may benefit 
the reproductive prognosis of non-azoospermic males but 
with poor semen parameters and with a previous ICSI fail-
ure who want to increase the chances of success in seeking 
parenthood and are reluctant to use donated sperm.
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